Guide: WSDL

Definitions
Type Declarations
Messages
Operations

© Request-Response

© One-way

© Solicit-Response

© Notification

© Figure 1: The Operation Types
® Bindings
® Services and Ports

© Figure 2: The Connected Pieces of the WSDL Puzzle

® References

WSDL stands for Web Service Definition Language. It is essentially an abstract interface definition that spells out concrete bindings to on-the-wire
formatting of the messages.

Here is an example WSDL file that we will use in this guide:

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions
name="Test WsDL"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xm soap. or g/ wsdl /">
<types>
<xsd: schema>
<xsd: el ement nane="User" type="User RecordType"/>
<xsd: conpl exType nane="User Recor dType" >
<xsd: sequence>
<xsd: el ement nane="nanme" type="xsd:string"/>
<xsd: el enent nanme="id" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>
</types>
<nessage nane="Recordl nput">
<part nane="user" el enent="User"/>
</ message>
<nmessage nane="Recor dOperati onResult">
<part nane="return" type="xsd:int"/>
</ message>
<port Type nane="RecordQOperations">
<operation nane="addRecord">
<i nput nessage="Recordl nput"/>
<out put nessage="Recor dQOperati onResult"/>
</ oper ati on>
<oper ation nanme="del et eRecord" >
<i nput nessage="Recordl nput"/>
<out put nessage="Recor dQperationResul t"/>
</ operation>
</ port Type>
<bi ndi ng nanme="Recor dBi ndi ngs" type="RecordOperations">
<soap: bi ndi ng styl e="docunent” transport="http://schemas. xm soap. org/ soap/ http"/>
<operati on nane="addRecord" >
<soap: operation styl e="docunment" soapActi on="addRecord"/>
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ operati on>
<oper ation nanme="del et eRecord" >
<soap: operation styl e="document" soapActi on="del et eRecord"/>
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ operation>
</ bi ndi ng>
<servi ce name="RecordService">
<port nane="RecordServi cePort" bindi ng="Recor dBi ndi ngs">
<soap: address | ocation="http://I|ocal host: 8090/ Recor dOps"/ >
</ port>
</ service>
</ definitions>

Definitions

The root element (disregard the <?xml ...?> prolog) of any WSDL must be the wsdl:definitions element:

<definitions
name="Test WSDL"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schenmas. xn soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xm soap. or g/ wsdl /">

This declares the named WSDL (in this case TestWSDL) and defines any namespaces that will be used in the rest of the document. You will almost
always see the following namespace declarations:

http://schemas.xmlsoap.org/wsdl/

This is the WSDL namespace and it is often declared as the default namespace so the WSDL elements don't have to have namespace prefixes.
http://mww.w3.0rg/2001/XMLSchema

This is the XSD (XML Schema Definitions) namespace and it is used to declare schemas and any simple types.
http://schemas.xmlsoap.org/wsdl/soap/

This is the SOAP binding namespace and is used to tie this WSDL to SOAP messages (see below).

Sometimes you will see targetNamespace declarations, which essentially place any defined objects into the specified namespace, so they will have to be
accessed through that URI. This is especially useful when you have multiple WSDL files which may define similar operations or types.

Type Declarations

User-defined types may be declared in one of two ways: either in the WSDL itself, or in a separate schema file. To import a schema file, use the wsdl:import
element:

<import namespace="[URI in which to place the declared types]" location="[file name]"/>

This will pull the given schema into the WSDL and all of the types will be available through the given namespace URI. The other way to declare types is to
place the schema in a wsdl:types element. The types element contains one child: the xsd:schema element. For more information on schemas and schema
structure, please see <link to XSD KB article or other Schema informational source>.

For our purposes in our example, we will deal with a simple user-defined type.

Messages

Messages are the basis for all input/output for a WSDL and its operations. They form the core of all data transfer mechanisms for WSDLs.

<nmessage nane="Recordl nput">
<part nane="user" el enent="User"/>
</ message>
<nmessage nane="Recor dOperati onResult">
<part nane="return" type="xsd:int"/>
</ message>

All messages are essentially maps of named parts. In this case, we have two messages, each with one part. Below, we will show an example of messages
with more than one part.

Parts must have a name and either an element or type declaration. If the part is defined as an element via the element="foo" directive, then it must directly
correspond to a <xsd:element name="foo" type="..."> definition in a schema. If the part is defined as a type via the type="fooType"directive, then it must
correspond to either a <xsd:complexType name="fooType"> or a <xsd:simpleType name="fooType"> in a schema.

The distinction between type and element here is slight but important. Parts that are elements will contain the specified element, whereas parts that are typ
es will become that specified type. This will become important when we begin to go over actual instance documents in the SOAP message section below.

Operations

Operations in WSDL are grouped by interface grouping, or port type. These operations are specified in abstract in the WSDL and the concrete
implementation essentially implements this abstract interface. The concrete specifications are supplied in the bindings section.

http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
https://rwkbp.makekb.com/index.php?View=entry&EntryID=1410#Bindings

<port Type name="Recor dCperati ons">
<operati on nane="addRecord">
<i nput nmessage="Recordl nput"/>
<out put nessage="Recor dQperationResul t"/>
</ operation>
<operation nane="del et eRecord">
<i nput nessage="Recordl nput"/>
<out put nessage="Recor dQOperati onResult"/>
</ oper ati on>
</ port Type>

This defines a port type grouping called RecordOperations with two operations: addRecord and deleteRecord. Both of these operations take the same
input and output: a Recordinput message in and a RecordOperationResult out.

A port type declaration can have 0 to N operations, although you will typically have at least one operation for each port type declaration.

Each operation can define an input message, an output message, and as many fault messages as necessary. The combination of input and/or output
declarations determines the operation types as well as the types of errors the operation can return:

Request-Response

<input .../>
<output .../>
<fault ...>*
One-way
<input .../>

Solicit-Response

<output .../>
<input .../>
<fault ...>*
Notification
<output .../>

Request-Response is the most commonly-used standard WSDL operation. A request is sent, the operation is executed, and a response is returned. While
the operation is being executed, the client connection (the side that sent the request) will wait for the response. This can cause problems with HTTP, which
has a timeout period, after which the socket will be reset with an error. Any number of faults (including none) can be specified. These dictate what sorts of

error responses the client can expect to receive from the operation. It is much like the throws specifier in Java and C++.

One-way is other standard supported WSDL operation type. Basically, a request is sent and the operation is executed, but the client need not wait around
for a response, because no response will ever be sent. This is useful with operations that are performing some asynchronous operation that does not need
to return a success condition, or any data.

Solicit-Response and Notification operations are only supported by extensions to the WSDL bindings or by specialized WSDL implementations.

These diagrams illustrate the differences between the operation types:

Request-Response One-way

Client Server Client Server
Request SN Reguest
Client
Connection
Client
Connection
),

Figure 1: The Operation Types

Bindings

The binding section attaches an abstract interface to a concrete messaging structure. By far, the most common type of binding is a SOAP binding
(discussed below in the Guide: SOAP article). But basically, the binding section of a WSDL has as its first child element, a concrete binding element. The
binding element namespace dictates the concrete binding to use. Different concrete binding elements expect different attributes. The next elements under
the WSDL binding are the operations. These should match the operations specified in the port type element. Under each operation is a concrete operation
element. The concrete operation element's namespace and structure is dictated by the specific concrete implementation (such as the SOAP Binding
namespace in our example). The same input, output, and fault elements should be present here as were declared in the port type section above.

These concrete bindings are all wrapped up into a named binding, which will be exposed on a port (see the next section).

<bi ndi ng nanme="Recor dBi ndi ngs" type="RecordOperations">
<soap: bi ndi ng styl e="docunment" transport="http://schemas. xm soap. or g/ soap/ http"/>
<oper ation nanme="addRecord">
<soap: operation style="docunent" soapActi on="addRecord"/>
<i nput >
<soap: body use="literal"/>
</ i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ oper ati on>
<operation name="del et eRecord" >
<soap: operation style="docunment" soapAction="del eteRecord"/>
<i nput >
<soap: body use="literal"/>
</ i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ oper ati on>
</ bi ndi ng>

https://library.roguewave.com/display/SUPPORT/Guide%3A+SOAP

This WSDL defines a binding called RecordBindings, tied concretely to a SOAP binding and using HTTP as its transport mechanism. The style set in the so
ap:binding here is applicable to all of the operations for this binding, unless a concrete SOAP binding overrides the setting individually. This binding
contains within it two operations: addRecord, and deleteRecord, which were defined in the port type section. Both of these operations are bound concretely
as SOAP operations and will be sent in document style. The input and output for both operations are both bound to SOAP bodies and will be sent without
any encoding (literal). Neither operation defines any specific faults that they will send. Note that the operations set their own style, although they match doc
ument style set in the soap:binding. In this case, the style attributes in the operations can be removed, but the style CAN be overridden at an operation
level if desired. Another point of interest is to notice that different operations can specify different styles, encodings, and whether to use parts of elements
or of types, than other operations, or even different options in the request than the response. However, it is highly suggested that all of the SOAP options b
e kept consistent for ease-of-use, maintainability, and compliance.

The service section of the WSDL exposes this binding to the outside world.

Services and Ports

In order to make an operation available to the outside world, it must be exposed by a port. A port in a WSDL and a port in TCP are similar concepts. In
TCP, you can have multiple ports on an IP that are entry points to services on a single machine. In WSDL, one server can expose operations on different p
orts. These ports are then bound with a concrete address element, which, like the bindings above, are declared in a different namespace and have their
own attributes. The most commonly used address is the SOAP address as in this example:

<servi ce name="RecordService">
<port nanme="RecordServicePort" bi ndi ng="Recor dBi ndi ngs">
<soap: address | ocation="http://|ocal host: 8090/ Recor dOps"/ >
</ port>
</ service>

This WSDL snippet creates a WSDL service named RecordService and populates it with one port named RecordServicePort. This port ties the RecordBind
ings binding declared above to an HTTP address: http://localhost:8090/RecordOps. A WSDL service can have multiple ports, which can tie different binding
objects to different addresses. This WSDL service is the external endpoint used to access the ports and the operations defined in the WSDL.

For a SOAP address, the port ties a binding to an HTTP URI. This URI is sent in the HTTP message as the location. When that location is received, the
server knows which binding is attached to that address, and by the SOAP message (either through RPC, or through the soapAction header), the server
knows which operation in that binding. Thus, it follows that only one binding can be mapped to a particular location, because otherwise the system wouldn't
know which binding to pick. However, a single binding can be mapped to multiple addresses, because the system would still know which binding to use
based on the address.

[par
[pan
[par
[pan N raur |
[pan |

Figure 2: The Connected Pieces of the WSDL Puzzle

References

WS-I Profile 1.2: http://www.ws-i.org/Profiles/BasicProfile-1.2.html

WSDL 1.1 spec: http://www.w3.0rg/TR/wsdl

SOAP 1.1 spec: http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

XSD data types spec: http://www.w3.0rg/TR/2004/REC-xmlIschema-2-20041028/datatypes.html

Guide to choosing WSDL styles: http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

https://rwkbp.makekb.com/index.php?View=entry&EntryID=1410#SOAP_Bindings_with_WSDL
http://localhost:8090/RecordOps
http://www.ws-i.org/Profiles/BasicProfile-1.2.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

	Guide: WSDL

