
Guide: SOAP

SOAP 1.1 Envelope Structure
SOAP 1.1 Faults
SOAP in HTTP
SOAP Bindings with WSDL

Figure 3: The Five SOAP Styles
Document Style
RPC style

SOAP Encoding
Style Summary

Figure 4: SOAP Style Combinations
Document/Literal
Document/Encoded
RPC/Literal
RPC/Encoded
Document/Wrapped

References

 stands for imple bject ccess rotocol.SOAP S O A P

 is a type of on-the-wire formatting that can encapsulate entire object trees as XML text. It is typically used with an HTTP-based transport to call an SOAP
operation in a web (i.e. through a). is a very open specification and how a message is structured is largely a function of its service WSDL SOAP SOAP
usage and environment.

All messages, though, follow a similar format. currently has two versions of its specification out, 1.1 and 1.2. 1.2 is a popular choice, but as it SOAP SOAP
has not yet been fully adopted by the industry, this article will stick with 1.1 for its examples.SOAP

 1.1 Envelope StructureSOAP

blocked URL

The base element is the . This element can hold an optional Headers element, which can in turn hold any number or kind of child SOAP Envelope
elements. The then must either have a or a . are only allowed in a response. The element can be either in a request or a Envelope Body Fault Faults Body
response.

The element contains optional headers for the . Only one header is defined by the specification: the header, Headers service SOAP SOAP mustUnderstand
which, if , states all supplied headers must be parsed and validated by the receiving . All other headers are defined by the specific application.true service

Basically the element contains the data for the web . For requests, it can contain which operation to call, and it always holds all of the data Body service
needed for the call. For responses, it can contain the operation that was called and will always contain the return information when the operation
completed successfully. , on the other hand, are present when an error or exception occurs. This can be anything from an operation not being found Faults
to invalid data to internal system problems.

The Body element can contain any child element, but usually only one child element is allowed. The child element can be formatted in a number of
different ways, depending on the scenario (see below).

 1.1 FaultsSOAP

The fault element MUST contain at least the fault code, the fault string, and the detail, and it MAY contain the fault actor. defines a subset of fault SOAP
codes to use, but any valid qualified name can be used. The two most commonly used are and errors. errors describe :Clientsoap :Serversoap :Clientsoap
a problem with the received message or the client communication. errors describe a problem which occurred on the server during execution of :Serversoap
the . In any case, the fault code is a fully qualified name which is composed of a namespace prefix (that must already be defined) and a local name service
(which must be a valid name within that namespace).

For example, these fault codes are invalid:

<faultcode>ClientError</faultcode>
<faultcode>http://mysite.com/myURI::ClientError</faultcode>
<faultcode>NS1:ClientError</faultcode> // Where NS1 is not defined as a valid namespace prefix

These are valid:

<faultcode>SOAP:Client</faultcode> // Where SOAP is declared in the envelope to be the SOAP namespace
<faultcode xmlns:ns1="myURI">ns1:ClientError</faultcode>

The fault string is any summary of the error, and the fault actor is a URI defining the source of the fault.

https://rwkbp.makekb.com/kb_upload/Image/HydraExpress/WSDL_SOAP_EnvelopeStructure.jpg

The detail is essentially an element that specifies detail about the fault, and generally contains an XML element that matches one of the fault messages
specified in the corresponding operation's definition (see Operations in the article). It is almost always present, although it can be omitted in Guide: WSDL
certain circumstances (e.g. if the fault was encountered outside the Body element), and it can be empty.SOAP

 in HTTPSOAP

 is very often sent as an HTTP payload. This uses standard HTTP (with its benefits and limitations) to send the message as a text payload. SOAP SOAP
The standard HTTP request looks like:

<method> <location> HTTP/<version>
<headers>
...

<payload>

and the standard response:

HTTP/<version> <status code> <reason>
<headers>
...

<payload>

The request is usually POST or GET (although other methods are available). The maps to the address URI in the as <method> <location> WSDL
described above. The is usually (although it can also be). The headers are all in the form of , and the <version> 1.1 1.0 <headerName>: <headerValue>
header value can also be a comma delimited list. At the end of the headers is an extra newline, separating the headers from the actual payload. A few
headers are almost always present: , , and , but the header is frequently present in web applications Content-Length Content-Type Host SOAPAction service
as well.

An example HTTP request with a payload might be:SOAP

POST http://server:8080/wsdl/address HTTP/1.1
Content-Length: 2080
Content-Type: text/xml
Host: server:8080
SOAPAction: testOperation

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"><SOAP:Body>...

An example HTTP response to the above request might look like:

HTTP/1.1 200 OK
Content-Length: 210
Content-Type: text/xml

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"><SOAP:Body>...

<See the HTTP specification for more information on message formats and types>.

The only other peculiarity with over HTTP is that any error in processing the request will result in a fault sent and an HTTP status code SOAP SOAP SOAP
of 500 (Internal Server Error). Any errors with the request will result in a response with an HTTP status code of 500 and a fault containing the SOAP SOAP
error information. All other HTTP-related errors will be sent back with the appropriate HTTP status code as defined by the HTTP specification.

 Bindings with SOAP WSDL

The most common usage of is with bindings. However, there are many types of bindings and many permutations of possible messageWSDL SOAP SOAP
s, which can be a bit confusing.

 messages are categorized into two main styles: document and RPC. Document styles are based around sending XML documents back and forth SOAP
while RPC (emote rocedure all) messages are based around sending function calls in and getting a return value. To further complicate matters, R P C
message parts (as described above) can either be a or an . This will also affect how the message is formatted. Finally, messagetype element SOAP SOAP
s can either be encoded or literal (no encoding). The encoding rarely affects the message a great deal, but in some circumstances (for SOAP HREFs
example) encoding can change the resulting message.SOAP

https://library.roguewave.com/display/SUPPORT/Guide%3A+WSDL

Here are the five different styes:SOAP

blocked URL

Figure 3: The Five StylesSOAP

Document Style

Document style messages are based around XML documents. The Body element, in effect, becomes the root element of the document. This SOAP SOAP
means that document style messages are really not supposed to have more than one , because the is supposed to be a document, not a part message
parameter list.

If the is a , then the Body element becomes that . For the XSD and message:part type SOAP type WSDL

XSD

<complexType name="foo">
 <sequence>
 <element name="sub1" type="xsd:integer"/>
 <element name="sub2" type="xsd:string"/>
 </sequence>
</complexType>
<element name="MyElement" type="foo"/>

 Message sectionWSDL

<message name="docTypeIn">
 <part name="doesntMatter" type="fooType"/>
</message>

 binding section:WSDL

<binding name="MyBinding" type="MyPortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="oper1">
 <soap:operation soapAction="oper1"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

 RequestSOAP

 <soap:Body>
 <sub1>42</sub1>
 <sub2>The answer to everything</sub2>
 </soap:Body>

The response would look similar, except with the output message instead. Note that the element becomes the type and since the SOAP Body fooType fooT
 type holds a sequence of two elements: and , the Body will hold two elements: and .ype sub1 sub2 SOAP sub1 sub2

If the is an element, then the will contain that element as a child. For the above XSD and this message section (the binding part SOAP Body WSDL WSDL
section is the same):

<message name="docTypeIn">
 <part name="doesntMatter" element="MyElement"/>
</message>

The resulting document-style message would look like:SOAP

https://rwkbp.makekb.com/kb_upload/Image/SOAP%20Styles.JPG

 <soap:Body>
 <MyElement>
 <sub1>42</sub1>
 <sub2>The answer to everything</sub2>
 </MyElement>
 </soap:Body>

The name will be printed as a fully qualified name. In this example is a simple local name with no namespace, but if a namespace element <MyElement>
were present, it would get printed as . In general, the subelements of this parent element are NOT fully qualified. <ns0:MyElement xmlns:ns0="myURI">
There is a flag in the XML Schema specification that says to qualify all children of all elements, but it is not common to use it.

Note that with multiple , one COULD define different elements and those elements could be placed in the in sequence. This is usually what parts Body
happens when multiple are specified for document-style, element messages, but still bear in mind that this is not standard nor advised. Also, note parts
that the name doesn't matter in the slightest. There is no place that the name gets printed in document-style messages, not even with part part SOAP
elements.

There is one more form of document-style messages called . If you look at the above messages, you will notice that there is no SOAP document-wrapped
indication of which to call. Looking at the WSDLs above, there are two pieces of information necessary to locate a web : the URI or operation service
"location", and the name of the . The URI is provided by the transport protocol, in this case the HTTP location in the HTTP request line. However, operation
the name is still missing. As you will see below with RPC, the name CAN be sent in the payload, but another common (and operation operation SOAP
usually necessary for document-style messages) way to transmit the name via the header in the HTTP header section.operation SOAPAction

This can be cumbersome and prone to error, because we are now relying on the transport to relay the information about which specific operation to call.
The transport directing us to the proper port makes a lot of sense, but after that, the transport's duties are finished. However, as you will see below, WSDL
RPC style messages have their own drawbacks. Fortunately there is a pretty clever way of getting the best of both worlds here.SOAP

If we take a document-style message with an element , and make sure to name the the exact name, then we, in effect, transmit SOAP part part operation
the as part of the message, making the HTTP header unnecessary. This style of message is really document-style operation SOAP SOAPAction SOAP
with an element , but it is commonly referred to as and is most commonly used in .NET applications.part doc-wrapped

Here's an example of .doc-wrapped

XSD:

<complexType name="operationParams">
 <sequence>
 <element name="param1" type="xsd:integer"/>
 <element name="param2" type="xsd:string"/>
 </sequence>
</complexType>
<element name="doTestOperation" type="operationParams"/>
<element name="doTestOperationResponse" type="xsd:integer"/>

 message section:WSDL

<message name="doTestOperationIn">
 <part name="doesntMatter" element="doTestOperation"/>
</message>
<message name="doTestOperationOut">
 <part name="doesntMatter" element="doTestOperationResponse"/>
</message>

 binding section:WSDL

<binding name="MyBinding" type="MyPortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="oper1">
 <soap:operation soapAction="oper1"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

 Request:SOAP

<soap:Body>
 <doTestOperation>
 <param1>42</param1>
 <param2>The answer to everything</param2>
 </doTestOperation>
 </soap:Body>

 Response:SOAP

 <soap:Body>
 <doTestOperationResponse>
 42
 </doTestOperationResponse>
 </soap:Body>

The header can be omitted (but, if present, it MUST be equal to the name, in this case: , and the parameters to this SOAPAction operation doTestOperation
operation are easy to specify and read. In effect, this style gets many of the benefits of RPC without a lot of the drawbacks (we'll cover RPC in the next
section). For this reason, it is a very common style, used in many applications (as noted, most commonly in .NET).SOAP

RPC style

So, we've covered the document styles and the drawbacks. Basically, document styles are based around sending XML documents, whereas web services
in general tend to represent function calls. These documents have problems representing simple function parameters and there is also the problem of
needing a transport level header to specify which function to invoke. Document-style messages can also only specify one and send a single XML part
document in the message.

RPC, on the other hand, was created to represent function calls. RPC-style messages contain a wrapping element that specifies the operation SOAP
name, and that element contains one child element for each of the function parameters. This allows multiple parts to be specified as either; simple types,
complex types, or elements. It also means that the header is unnecessary and can be omitted with RPC-style messages.SOAPAction

Both RPC with typed and with parts have the same structure, with the only difference being the information under the element.parts element part

Here is the general format for RPC-style messages.SOAP

XSD:

<complexType name="fooType">
 <sequence>
 <element name="sub1" type="xsd:integer"/>
 <element name="sub2" type="xsd:string"/>
 </sequence>
</complexType>
<element name="MyElement" type="fooType"/>

 message section:WSDL

<message name="doTestOperationIn">
 <part name="part1" element="doTestOperation"/>
 <part name="part2" type="doTestOperation"/>
</message>
<message name="doTestOperationOut">
 <part name="result" type="xsd:string"/>
</message>

 binding section:WSDL

<binding name="MyBinding" type="MyPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="oper1">
 <soap:operation soapAction="oper1"/>
 <input>
 <soap:body use="literal" namespace="wrapperURIIn"/>
 </input>
 <output>
 <soap:body use="literal" namespace="wrapperURIOut"/>
 </output>
 </operation>
</binding>

 Request:SOAP

 <soap:Body>
 <ns1:oper1 xmlns:ns1="wrapperURIIn">
 <part1>
 <MyElement>
 <sub1>42</sub1>
 <sub2>The answer to everything</sub2>
 </MyElement>
 </part1>
 <part2>
 <sub1>76</sub1>
 <sub2>Trombones leading the parade</sub2>
 </part2>
 </ns1:oper1>
 </soap:Body>

 Response:SOAP

 <soap:Body>
 <ns1:oper1Response xmlns:ns1="wrapperURIOut">
 <result>34</result>
 </ns1:oper1>
 </soap:Body>

You'll notice that, like document-style, the with the element contains the fully-qualified element, while the that's a becomes the specified .part part type type

You'll also notice that RPC, unlike document-style, treats web calls as functions with parameters and return values. Whereas document-style just service
passes around documents for requests and responses, RPC passes around function name, parameters, and result. The name in the request is operation
qualified by a namespace specified by the input body declaration in the as the namespace attribute. By convention, the name in SOAP WSDL operation
the response will have the tag appended to it to show that it is indeed a response, and it also is qualified by a namespace, in this case the Response
namespace attribute in the output body declaration. This is also known as the or the , because it is SOAP wrapper namespace, on-the-wire namespace
only used when the message is being sent and received. After the message is parsed, that namespace is no longer relevant.SOAP SOAP

 EncodingSOAP

There is one more "axis" to consider when formatting and parsing a message: encoding. This is specified in the input and output body tags in SOAP SOAP
the for each concrete operation in a binding. The use attribute is either set to to specify no encoding, or to encoded to specify that an WSDL literal
encoding scheme will be used/expected to format the message. The only real encoding scheme being used is encoding. The encoding SOAP SOAP
mainly allows for references and arrays, among some other lesser features. It also will generally add an attribute to specify the type for each of the SOAP
elements, using the XSI (XML Schema for Instances) tag.type

The use of any encoding is not WS-I compliant because there isn't any way to standardize on encodings (because they are extensions by their WSDL
definition). This doesn't mean that it is illegal in to use encodings, but in real-world applications, its use is limited due to the lack of standardization.WSDL

Style Summary

blocked URL

https://rwkbp.makekb.com/kb_upload/Image/HydraExpress/WSDL_SOAP_Styles.jpg

Figure 4: Style CombinationsSOAP

Note: Typed parts must refer to XSD-defined types (xsd:simpleType or xsd:complexType definitions). Element parts must refer to an XSD-defined element
(xsd:element definition).

So, the question becomes, which style should we use? The different styles have their pros and cons. There is also the WS-I profile to consider. Although
this profile isn't a "specification" per se, it is essentially a standard that WSDL/SOAP users can rally around. The and specifications are SOAP WSDL
somewhat vague in places and downright ambiguous in others (for example, whether or not multiple are allowed in doc-literal isn't clearly stated in parts
the or specifications). The WS-I profile is a way to answer some of these questions by limiting the types of and messages WSDL SOAP WSDL SOAP
allowed in order to clear up ambiguities and irregularities. WS-I compliance is by no means necessary, but you'll find that the WS-I compliant styles are
more common in real-world applications.

Document/Literal

Benefits

Document literal, when only one is used and that is an element, is fully WS-I compliant, meaning that document/literal/element is part part
more common in real-world applications.
It is more intuitive for those who see web services simply as passing XML documents back and forth (rather than as function calls).
The message is pretty succinct and easy to parse.
Less extraneous information means faster transmission and parse speeds.
The content is completely defined by the schema, so it can be completely validated from front to back.Body's

Drawbacks

Only element parts are compliant to the WS-I profile, which means their use is more common than typed parts.
If document-style messages are used with more than one , there is no standard way of formatting the for such a message.part SOAP
The name is not present in the message and must be sent as extra information (e.g. the “SOAPAction” header in HTTP).operation SOAP
For those who view web services as function calls, this style doesn't make a lot of sense, since you aren't passing in "parameters" to a
function.

Document/Encoded

Benefits

None over document/literal.

Drawbacks

No one uses this style because it doesn't provide any benefits over document literal (encoding doesn't make sense for a standard XML
document format).
It is not WS-I compliant.

RPC/Literal

Benefits

RPC-literal messages with defined as are WS-I compliant.parts types
The name is included with the message, making dispatch easier.operation
The procedures are parameterized with , making the web call essentially a "function" with parameters and a return value.parts service
There is no redundant encoding information.type

Drawbacks

 with attachments or anything that uses HREFs aren't available without encoding.SOAP SOAP
The messages are usually a bit longer because of the information.operation/part
The messages cannot be fully validated because only the individual are described by a schema. The number and name of the musparts parts
t rely on the to validate correctness.WSDL
RPC-literal messages with parts defined as elements are not WS-I compliant.

RPC/Encoded

Benefits

Encoding allows for arrays, references, etc.SOAP
Encoding still has the main advantages of RPC (parameterized functions, operation name included, etc).
The type encoding information is necessary for data graphs (i.e. hrefs) and derived types.

Drawbacks

Type info will be included which is usually extraneous, confusing, and redundant.
Using an encoding scheme is not WS-I compliant because all encodings are extensions.
You still cannot validate the message from the Body, for the same reasons as in RPC-literal.

Document/Wrapped

Benefits

WS-I compliant since it is essentially document-literal with one element part.
Messages can be fully validated because the entire message is described by a schema.
Message can be easily seen as a function call with parameters, much like RPC.
No encoded type information
Operation response element is the name with appended to it, thus matching the RPC style exactly.operation Response

Drawbacks

The schema and get more complicated because the element name in the schema must match the operation name.WSDL
Since an element must be defined that matches the operation, only one operation with this name is allowed. Normally you can have the same
operation name in two port types and they'll be two different operations. But with doc-wrapped, the element has to match the operation and
you can't overload that (not even by putting the element in a different namespace, since the local name is what counts).
It is not an industry standard, although it is widely used. It came from Microsoft, but no one has taken up the flag and put the specification into
words (so there are still some ambiguous edge cases).

Each of the above styles (except for document/encoded which is never used) are all common. Doc-wrapped is newer but it is definitely gaining ground in
standard usage because it gains the benefits of RPC and can still be validated as a full document. RPC messages are useful when mapping web cservice
alls to C++ or Java methods, because they can be overloaded with different parameters, and the parameters are pretty easy to match up to C++ and Java
function arguments. Document-literal can be useful when passing full XML documents around to web implementations that don't implement service
function calls (BPEL, HTTP servlets, etc.). It is also useful when you need overloaded functions but only have one parameter, or you don't want the extra
overhead of the extra RPC elements.

References

WS-I Profile 1.2: http://www.ws-i.org/Profiles/BasicProfile-1.2.html

WSDL 1.1 spec: http://www.w3.org/TR/wsdl

SOAP 1.1 spec: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

XSD data types spec: http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html

Guide to choosing styles: WSDL http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

http://www.ws-i.org/Profiles/BasicProfile-1.2.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

	Guide: SOAP

